Cancer can be understood as a problem of cheating in the multicellular body. In cancer, certain cells of the body enhance their fitness at the expense of the organism as a whole. The evolution of multicellularity represents a highly sophisticated form of cooperation and cheater suppression. Each independent evolution of multicellularity required suppressing somatic cheating (i.e., cancer) long enough for the organism to survive and reproduce. I provide a review of somatic cheating in cancer like phenomena across the tree of life including the 6 independent branches of complex multicellularity. I focus on forms of cheating that involve resource acquisition and monopolization, including upregulated metabolism and disregulated signaling for limiting resources. I describe model results showing that resource cheating may be central to cancer evolution and progression to malignant disease.